空間統計学的手法を用いた環境データの分布推定結果を
身近なソフトウェアで誰にでも閲覧可能にする技術について

研究の概要
この研究では、近年の空間統計学的手法で解析された地理環境情報を、一般の方々でも操作しやすいGoogle earthで表示可能にするためのソフトウェア開発を行っています。これにより有効な地理空間情報を特別で高価なハードウェアやソフトウェア無しで閲覧可能にするため、さまざまな地理空間情報を行政、日常生活、企業活動等に利用することが可能になります。

Google earthが持つ機能を積極的に活用した表示
Google earthは地形情報、地表画像、さらに主な構造物（建物、道路、鉄道、港湾設備など）のデータを表示可能です。また任意の角度と方位、そして縮尺での表示も可能です。これらの機能と情報により地理空間情報の分布をより具体的に把握することが可能です。
この図はSPMの推定分布を横浜市を主として周辺区域で表示したものです。

地理空間情報空間統計解析する手法
SPM濃度の観測データが持つ密度・経度・濃度の情報から空間的関係分布を推定する手法は、空間統計学と呼ばれます。この研究では地理情報のためのフリー・オープンソースソフトウェア（FOSS4G）とR言語を使用して空間統計解析を行っています。

Digital Geological Map
Earth Scientific information
Zone Assign
DEM Assign
Universal Kriging
Results

Digital Elevation Model

今回の部分を紹介
デジタル地形モデル(DEM)を彩色したマップを表示した例

この図はデジタル地形モデル(DEM)のデータを処理し、標高に応じて連続的に彩色したマップをGoogle earthで表示しています。彩色されたDEMデータがGoogle earthが持っている地形データにドレープされ、地形が三次元的に把握可能になっています。さらに地表面像も表示されていますから、より具体的な地形の把握が可能です。

花崗岩体での鉱物の物性分布推定

この図は岡山大港が位置する花崗岩体での、鉱物の物性の空間分布を推定したマップをGoogle earthで表示しています。元のデータは鉱物の結晶構造に関する物性を測定したものです。採取したサンプルの鉱物含有量を測定したデータを元に空間統計解析すれば、鉱石の品位分布の推定が行えます。

まとめと今後の展望

今回紹介した技術により、様々な地理空間情報を誰にでも役立てるGoogle earthで表示することが可能になっています。この技術を資源管理、危機管理、国土計画、住民サービス、公益サービス、エネルギー開発などの分野で利用すれば、業務の一層の効率化が期待できます。またFOSS4Gを積極的に採用することで、地理空間情報の利用コストを低く抑えている点もこの研究の特徴の一つです。今後も様々な地理空間情報の解析および利用技術の開発を進めて行きます。